uninflatable encodes a novel ectodermal apical surface protein required for tracheal inflation in Drosophila.
نویسندگان
چکیده
The tracheal system of Drosophila melanogaster has proven to be an excellent model system for studying the development of branched tubular organs. Mechanisms regulating the patterning and initial maturation of the tracheal system have been largely worked out, yet important questions remain regarding how the mature tubes inflate with air at the end of embryogenesis, and how the tracheal system grows in response to the oxygen needs of a developing larva that increases nearly 1000-fold in volume over a four day period. Here we describe the cloning and characterization of uninflatable (uif), a gene that encodes a large transmembrane protein containing carbohydrate binding and cell signaling motifs in its extracellular domain. Uif is highly conserved in insect species, but does not appear to have a true ortholog in vertebrate species. uif is expressed zygotically beginning in stage 5 embryos, and Uif protein localizes to the apical plasma membrane in all ectodermally derived epithelia, most notably in the tracheal system. uif mutant animals show defects in tracheal inflation at the end of embryogenesis, and die primarily as larvae. Tracheal tubes in mutant larvae are often crushed or twisted, although tracheal patterning and maturation appear normal during embryogenesis. uif mutant larvae also show defects in tracheal growth and molting of their tracheal cuticle.
منابع مشابه
γCOP Is Required for Apical Protein Secretion and Epithelial Morphogenesis in Drosophila melanogaster
BACKGROUND There is increasing evidence that tissue-specific modifications of basic cellular functions play an important role in development and disease. To identify the functions of COPI coatomer-mediated membrane trafficking in Drosophila development, we were aiming to create loss-of-function mutations in the gammaCOP gene, which encodes a subunit of the COPI coatomer complex. PRINCIPAL FIN...
متن کاملAn Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity
During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ic...
متن کاملDrosophila convoluted/dALS is an essential gene required for tracheal tube morphogenesis and apical matrix organization.
Insulin-like growth factors (IGFs) control cell and organism growth through evolutionarily conserved signaling pathways. The mammalian acid-labile subunit (ALS) is a secreted protein that complexes with IGFs to modulate their activity. Recent work has shown that a Drosophila homolog of ALS, dALS, can also complex with and modulate the activity of a Drosophila IGF. Here we report the first mutat...
متن کاملThe plakin Short Stop and the RhoA GTPase are required for E-cadherin-dependent apical surface remodeling during tracheal tube fusion.
Cells in vascular and other tubular networks require apical polarity in order to contact each other properly and to form lumen. As tracheal branches join together in Drosophila melanogaster embryos, specialized cells at the junction form a new E-cadherin-based contact and assemble an associated track of F-actin and the plakin Short Stop (shot). In these fusion cells, the apical surface determin...
متن کاملfaint sausage encodes a novel extracellular protein of the immunoglobulin superfamily required for cell migration and the establishment of normal axonal pathways in the Drosophila nervous system.
We examined the structure of the nervous system in Drosophila embryos homozygous for a null mutation in the faint sausage (fas) gene. In the peripheral nervous system (PNS) of fas mutants, neurons fail to delaminate from the ectodermal epithelium; in the central nervous system (CNS), the positions of neuronal cell bodies and glial cells are abnormal and normal axonal pathways do not form. Seque...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 336 2 شماره
صفحات -
تاریخ انتشار 2009